If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+X^2-225=0
We add all the numbers together, and all the variables
2X^2-225=0
a = 2; b = 0; c = -225;
Δ = b2-4ac
Δ = 02-4·2·(-225)
Δ = 1800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1800}=\sqrt{900*2}=\sqrt{900}*\sqrt{2}=30\sqrt{2}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-30\sqrt{2}}{2*2}=\frac{0-30\sqrt{2}}{4} =-\frac{30\sqrt{2}}{4} =-\frac{15\sqrt{2}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+30\sqrt{2}}{2*2}=\frac{0+30\sqrt{2}}{4} =\frac{30\sqrt{2}}{4} =\frac{15\sqrt{2}}{2} $
| 2(h+5)=h+12 | | 5x-52=180-(3x+40) | | 2a-18.6+a-2.5+a+2.4=18.5 | | 7u-35=-7(u+10 | | 25=k/8+20 | | 2(7-x)=20 | | 25=k8+ 20 | | 2x=3x+-11 | | 5g-4=6g-12 | | 3(s+7)=42 | | 8(s+2)=72 | | 5.4x+5.4=10.8 | | s/2+10=11 | | 8g-2=33 | | -(x-3)=-6(2x+3) | | X^2+y^2-196=0 | | 3/4x+5=19 | | 7x=10-9 | | 0.75g+15=0.50+13 | | 0.75g+15=0.50+3 | | x+20+3x-15=180 | | 20=3c+8 | | -8(1-3x)=-7(-4-4x) | | .7+.3x=2x-7 | | 12x-13-x=10x | | -7(-4-2n)=-4(8+4n) | | 3x/4+2x72=8/11 | | -3(1-x)-2x=6-4(x-4) | | (z-5)(z^2-10z+25)=0 | | 8x-22/6=7 | | 3n+2(3n-6)=6(n-4) | | k−6.79=6.31 |